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Creep in phosphorus alloyed copper during power-law breakdown
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Abstract

During the first phase of storage, creep will take place in the copper canisters in the KBS-3 package for nuclear waste. The temper-
atures are below 100 �C, and the creep is well inside the power-law breakdown regime. Creep models for this situation have been devel-
oped. The analysed material is pure copper with about 50 ppm phosphorus. Constitutive equations for creep and other plastic
deformation have been set up based on a generalised Norton expression and Kocks–Mecking’s model for the back stress. A model
for the minimum creep rate based on fundamental principles for climb and glide has been derived. This model gives the correct order
of magnitude for the creep rate in the temperature range from 400 to 20 �C without the use of fitted parameters. The creep exponent
varies from 5 to 105 in this interval. The constitutive equations have also been formulated for multiaxial stress states.
� 2007 Published by Elsevier B.V.

PACS: 83.10.Gr; 81.70.Bt; 87.15.La
1. Introduction

According to the proposed method in Sweden the
nuclear waste will be placed in a package consisting of a cast
iron insert and an outer 50 mm thick copper vessel [1]. The
waste packages are to be placed in a depository 500 m below
ground. Copper was selected because it is immune against
corrosion under reducing conditions in the bedrock. Creep
in the waste package is expected to take place when the sur-
rounding bentonite clay absorbs water, which gives rise to a
swelling pressure. Due to creep in the copper, the existing
gap between the canister and the cast iron insert is gradually
closed. The waste package is designed to ensure that the
temperature does not exceed 100 �C. Creep may also occur
if the canister is sheared during an earthquake. The temper-
ature in such a case would be close to ambient.

To avoid problems with low creep ductility in high pur-
ity oxygen-free high conductivity (Cu-OF) copper [2], cop-
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Sweden. Fax: +46 8 203107.

E-mail address: rsand@kth.se (R. Sandström).
per with additions of about 50 ppm phosphorus (Cu-OFP)
is now considered [3]. Even in the low temperature range of
interest for the waste package of 0–100 �C, creep is taking
place [4]. There is a dramatic change in the creep behaviour
of copper in the interval 175–300 �C [2]. In particular, there
is a large increase in the creep exponent, which is tradition-
ally referred to as power-law breakdown. In many papers it
is proposed that the stress dependence can be described by
a factor of the form exp(br) where b is a constant and r the
applied stress. However, this form does not give an ade-
quate representation for copper.

The purpose of the present paper is to develop a funda-
mental model that can describe the stress and temperature
of the creep rate for Cu-OFP. In addition constitutive
equations for plastic deformation and creep in copper are
presented. The focus will be on the power-law breakdown
regime (<300 �C).
2. Material data

The traditional way of determining creep properties is to
perform creep strain or rupture tests with dead weight
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loading. For the type of P-doped copper that is intended
for copper canisters, many such tests have been performed
[5–10]. They will be utilised in the present assessment. In
addition results from slow rate tensile tests will be used
[4]. This testing technique has several advantages. It avoids
the large initial plastic strain of 5–15% in the creep tests. In
addition it somewhat simulates the situation in the canis-
ters, when the initial loading is established. Creep testing
on the other hand has the advantage that equipment is
readily available for performing long term tests.

The batches considered are listed in Table 1. Their impu-
rity content, their grain size and the mechanical properties
are summarised. Only one batch has been considered for
slow strain rate tensile tests (SSR), namely the last one.
This is the only batch that has been cold worked, since it
is taken from a rolled formed canister. The amount of cold
work in the processing has been estimated to 8%. All the
other batches have been used for creep testing.

The amount of testing for each batch is listed in Table 2.
The test temperatures are given together with the number
of tests at each temperature (in brackets). Most of the
batches have a phosphorus content between 50 and
70 ppm. One batch has a higher content and one a lower
one. The four batches tested at 175 �C have been found
to have quite similar creep properties independently of
phosphorus content and grain size. They are handled as
one set in the present assessment.
Table 1
Characteristics of analysed materials

Material
number

Test series Grain
size (lm)

P
(ppm)

S
(ppm)

H
(ppm)

O
(ppm)

Yiel
Rp0.2

2 CuP30_450 450 29 6 <0.5 1.2 –
3 CuP60_350 350 58 6 <0.5 1.1 52
4 CuP105_450 450 106 5 <0.5 1.1 51
6 CuP60_100 100 58 6 <0.5 – 56

400a Cu-OFP400 45 50 6 <0.10 0.90 46
400a Cu-OFP400 59 97
500 Cu-OFP500 54 93
900 Cu-OFP

SSR
50b 209

a Two assessments have been performed.
b Estimated value.

Table 2
Creep and slow strain rate tests included in the assessment

Material number Test series Test temperatures and number of specimen

2 CuP30_450 175 (4)
3 CuP60_350 175 (5)
4 CuP105_450 175 (4)
6 CuP60_100 175 (4)

400 Cu-OFP400 215 (5), 250 (3), 300 (4), 350 (2), 400 (2), 4
500 Cu-OFP500 200 (1), 215 (3), 250 (3), 275 (3), 300 (3), 3

350 (2)
900 Cu-OFP SSR 20 (2), 75 (4), 125 (4), 175 (4)
3. Constitutive model

3.1. Basic assumptions

The total strain rate etot is considered to consist of the
elastic strain rate and the creep strain rate

detot

dt
¼ 1

E
dr
dt
þ Arn

eff ; ð1Þ

where E is the elastic modulus, t the time, and r the stress.
A and n are constants. The effective stress reff is the differ-
ence between the applied stress r and an internal back
stress ri

reff ¼ r� ri: ð2Þ
The internal stress can be defined and modelled in differ-

ent ways. It cannot be measured in an unambiguous way. It
should therefore be considered as a model quantity. In our
case the internal stress is assumed to be the result of work
hardening in the material.

The dislocation generation during plastic deformation is
often expressed as

dq
de
¼ m

bL
� 2xq; ð3Þ

where q is the dislocation density, e the plastic strain, m the
Taylor factor, b Burgers vector, L the mean free path of re-
leased dislocations, and x a constant. The first term on the
d strength
(MPa)

Tensile strength
Rm (MPa)

Elongation
(%)

Reduction in
area Z (%)

Hardness
(HV)

– – 53
225 45 55
224 46 –
231 46 55
239 60 40
243 46 94 54
202 42 76 53
226 116

s (�C) Comment Reference

[9]
[9]
[9]
[9]

50 (1) [5,7]
25 (1), [5–7]

Slow strain rate tensile testing; cold worked material [4]
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right hand side represents the work hardening and the sec-
ond term the dynamic recovery. Following Kocks and
Mecking [11], L is assumed to be proportional to 1=

ffiffiffi
q
p

which means that the dislocation movement is controlled
by the forest of other dislocations. The back stress is re-
lated to the dislocation density

ri ¼ ri0 þ aGb
ffiffiffi
q
p

; ð4Þ

where G is the shear modulus, ri0 and a are constants. Due
the assumptions above, ri0 vanishes in our case. If (4) is in-
serted into (3), the following relation is obtained:

dri

de
¼ xðC � riÞ; ð5Þ

where C is a constant that can be expressed in the other
constants in Eqs. (3) and (4). Eq. (5) can be integrated di-
rectly if x and C are constants

ri ¼ C � C1e�xe; ð6Þ

where C1 is a constant that is found from the initial value
of ri. Since ri is assumed to represent the work hardening,
ri = 0 for e = 0. This gives C1 = C. Eqs. (5) and (6) are re-
ferred to as the Kocks–Mecking model for plastic deforma-
tion. This model has often turned out to give a good
description of plastic deformation of fcc alloys. Eq. (1) to-
gether with (5) or (6) represent a model for describing the
plastic deformation of materials including creep. Next the
constants in Eq. (1) will be determined by comparison to
creep and slow strain rate tensile tests.
3.2. Stationary creep

The minimum (stationary) creep rate of many alloys can
be described by the following equation:

decr

dt

����
min

¼ Arnebre�
q

RT ; ð7Þ

where ecr is the creep strain, t the time, decr

dt

��
min

is the mini-
mum creep rate, r the applied stress, and T the absolute
temperature. A, n, b, and q are constants, and R the gas
constant. Eq. (7) can be derived from fundamental facts
in physical metallurgy if the creep is assumed to be con-
trolled by climb of dislocations. Since a wide temperature
range of copper data will be considered, Eq. (7) is not suf-
ficient in its basic form. Above a characteristic temperature
for each material, the creep exponent n is 4–6. This is re-
ferred to as power-law creep. Below this temperature and
at high stresses the creep exponent becomes much larger.
This is called power-law breakdown. Although the factor
ebr in Eq. (7) gives an increase in the creep exponent with
increasing stress, the effect is not large enough. For that
reason the following generalised form of Eq. (7) will be
used:

decr

dt

����
min

¼ ArnðT ÞebðrÞe�
qðT Þ
RT : ð8Þ
In Eq. (8), n(T) and q(T) are assumed to be functions of
T, and b(r) a function of r. For the creep tests the mini-
mum creep rate and the applied stress r are utilised in
Eq. (8). For the tensile tests, the stationary situation is con-
sidered. The creep rate is then the total strain rate and the
stationary engineering stress the r value. The physical basis
of Eq. (8) will be discussed in Section 4. For data in the
temperature intervals 20–175 �C and 200–400 �C, the fit is
illustrated in Fig. 1.

For the creep data the minimum creep rate is given ver-
sus stress in Fig. 1. For the slow strain rate tests, the strain
rate versus the stationary stress is shown. A second order
polynomial has been used for b(r). For q(T) the form
q(T) = �RTc(TC) has been assumed where c(TC) is a sec-
ond order polynomial in the Celsius temperature TC. The
reason for keeping TC instead of the absolute temperature
in the expression for q(T) is to avoid numerical difficulties
that otherwise easily appear due to the presence of very
large numbers. The fit to data is in general acceptable
except possibly at 175 �C. At this temperature the slow
strain rate tensile tests (SSR) show a higher strain rate than
the creep tests. The reason for this difference will be dis-
cussed below. The parameter values used in Eq. (8) are
given in Table 3.

An effective creep exponent N can be defined from Eq.
(8)

N ¼ o log _ecr

o log r

����
min

¼ nðT Þ þ r
dbðrÞ

dr
: ð9Þ

The effective creep exponent N as a function of stress
and temperature is shown in Fig. 2.

The creep exponent increases with decreasing tempera-
ture from 45 to 60 at 175 �C to 105 at 20 �C. Such high
creep exponents have also been observed for steels at
320–360 �C, that is 150 �C below the normal creep range
for unalloyed steels [12]. If we limit ourselves to tempera-
tures above 200 �C, the behaviour of the data is different,
see Fig. 1. The slope of the curves is much lower, which
is also apparent from the creep exponent, see Fig. 2(b).
As pointed out above the creep exponent in the power-
law regime is 4–6. This takes place for stresses below
60 MPa.

Representations based on Eq. (8) can only be extrapo-
lated to a limited extent outside the experimental data
ranges. The maximum application interval is summarised
in Table 4.
3.3. Stress–strain curves

With the aid of Eqs. (1), (2) and (5) for the back stress ri,
the stress–strain curve during a tensile test can be modelled.
The creep rate now takes the form

decr

dt

����
min

¼ ArnðT Þ
eff ebðreff Þe�

qðT Þ
RT : ð10Þ



Fig. 1. Creep rate as a function of stress. SSR refers to slow strain rate tensile tests. (a) Data interval 20–175 �C and (b) data interval 200–400 �C.

Table 3
Constants in Eq. (8)

Temperature range (�C) A (1/s) n b1 (1/MPa) b2 (1/MPa2) c1 (1/�C) c2 (1/�C2) Fig. no.

20–175 5.40 · 10�23 0 �9.08 · 10�2 14.3 · 10�4 �0.727 · 10�2 5.46 · 10�4 1a
200–400 2.00 · 10�21 0.00323 11.12 · 10�2 �0.771 · 10�4 9.92 · 10�2 �0.774 · 10�4 1b
20–175 6.33 · 1011 0 �90.5 · 10�2 35.4 · 10�4 2.12 · 10�2 6.67 · 10�4 6

bðrÞ ¼ b1rþ b2r
2; cðT CÞ ¼ c1T C þ c2T 2

C.
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Replacing the last term in Eq. (1) by (10) gives

dr
dt
¼ E

detot

dt
� EArnðT Þ

eff ebðreff Þe�
qðT Þ
RT : ð11Þ

During a tensile test the total strain rate is constant and
Eqs. (5) and (11) can be integrated directly. There are two
constants C and x in Eq. (5). C can be taken as the true
tensile strength, which is about 285 MPa at room tempera-
ture. At higher temperature, C is reduced in proportion to
the temperature dependence of the shear modulus G [13]

G ¼ 4:75� 104 � 17T ;
where G is given in MPa and T is the absolute temperature.
The following model is assumed for x [14,15]:

x ¼ B_enb

ðT � 273Þpb
; ð12Þ

where B, nb and pb are constants that are determined by fit-
ting to the stress–strain curves. The following values were
found: B = 4.02, nb = 0.0481, and pb = 0.277. The fit is
illustrated in Fig. 3.

There is considerable scatter in the experimental values
for x as can be seen from Fig. 3. It is clear that x increases



Fig. 2. Effective creep exponent N as a function of stress. (a) Data interval
20–175 �C and (b) data interval 200–400 �C.

Fig. 3. The x-values according to Eq. (12) versus strain rate are compared
to the data that have been determined for each tensile test.
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with increasing strain rate and decreasing temperature. The
use of Eq. (11) is illustrated for two tensile tests in Fig. 4.
For strain rates of 0.0001 1/s and below, the engineering
stress quickly reaches a stationary value. For the tensile
tests performed at 75–175 �C and 1 · 10�4–1 · 10�7 1/s
the flow curves are at the correct position showing that
Eq. (8) can describe the stationary stress. The true stress
is also influenced by strain hardening. The model in Eq.
(5) can accurately represent this strain hardening.
3.4. Creep strain curves

Before Eqs. (1) and (5) are used to predict creep strain
curves, Eq. (8) must be transferred to effective stresses. This
is done in the following way:
Table 4
Data ranges

Data temperature
range (�C)

Data stress
range (MPa)

Data strain rate
range (1/s)

20–175 145–210 1 · 10�9–1 · 10�3

200–400 40–160 5 · 10�10–1 · 10�6

20–175 145–210 1 · 10�7–1 · 10�3

c Based on physical limits.
decr

dt
¼ decr

dt

����
min

grate; ð13Þ

where

grate ¼
r1

r1 � ri1

� �N

; ð14Þ

where r1 and ri1 are the true applied stress and the back
stress at a given strain e1 that is taken as e1 = 0.20. e1 is
approximately the strain where the creep rate takes its min-
imum. Examples of modelled creep strain curves at 175 �C
for an applied stress of 150 MPa are given in Fig. 5. Since
only primary and secondary creep are taken into account
only the first part of the creep curves can be modelled.

There is considerable scatter between the curves. There
seems to be less scatter in the creep rate than in the initial
plastic strain. The modelled creep rate also compares
favourably with the experimental data. The typical varia-
tion between curves is that between Fig. 5(a) and (b).
The maximum difference between the model and the exper-
imental data in all analysed creep curves is a factor of 2 in
creep strain. The creep specimens had to be reloaded regu-
larly since the maximum strain of the creep machines was
exceeded. This gives the uneven appearance of the curves.
In the primary stage the creep rate is rapidly decreasing,
which is well accounted for in the model. The model
approximately follows:

decr

dt
¼ F e�de;
Max model stress
range (MPac)

Max model strain
rate range (1/sc)

Fig. no.

140–210 1 · 10�12–1 · 10�3 1a
40–140 1 · 10�12–1 · 10�3 1b
140–210 1 · 10�12–1 · 10�3 6
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Fig. 4. Slow strain rate tensile curves. Experimental engineering and true stress are shown versus true strain as well as the model according to Eq. (11). The
work hardening from Eq. (5) is shown separately. (a) 75 �C, 1 · 10�4 1/s and (b) 75 �C, 1 · 10�7 1/s.
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Fig. 5. Creep strain curves at 175 �C for a stress of 150 MPa. In (a) and (b) curves are tested under identical conditions.
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where F and d are constants. This behaviour is characteris-
tic of the X-model [16–19].
Fig. 6. Initial strain rate from creep tests and strain rate from SSR-tests as
a function of stress. Data interval 20–175 �C.
3.5. Combined creep and stress–strain analysis

It has been illustrated above that both stress–strain and
creep curves can be described by the presented model. The
limitation is that different assumptions are made concern-
ing the creep rate. In Section 3.3 the effective stress is
applied directly in Eq. (8), since the stationary stress is
equal to the effective stress in the tensile tests. However,
in Section 3.4 for the creep curves the effective stress cannot
be applied directly because the creep rate would be too low.
Instead the correction in Eq. (13) for the back stress was
introduced. Thus one must know in advance whether the
application is strain rate or stress driven.

To avoid this dilemma the following approach can be
used. Instead of the minimum creep rate, the initial primary
creep rate can be considered. The latter creep rate is not
influenced by the dislocation back stress. The procedure
is illustrated in Fig. 6.

The creep rates at 175 �C are now above the SSR-data,
whereas when the minimum creep rates were used, the
creep rates were below, see Fig. 1. Ideally the initial creep
rates and the SSR-rates at 175 �C should agree. One reason
that the SSR-rates are lower is that the copper used for the
SSR-tests was cold worked whereas the creep tests were for
annealed material. The variation of creep exponent is
somewhat more pronounced than in Fig. 2. The origin of
this effect is that the ratio between the initial and the min-
imum creep rates increases with decreasing stress. The con-
stants used to fit the data in Fig. 6 are given in Table 3. The
ranges for the applicability of the model are shown in Table
4. Neither the creep data nor the SSR-data in Fig. 6 are
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Fig. 8. Creep strain curves at 175 �C for different applied stresses modelled with Eq. (8) with constants in Table 3 (Fig. 6). (a) 160 MPa and (b) 150 MPa.
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affected by the back stress. The consequence is that Eq. (8)
can now be applied with the effective stress on the right
hand side and without the correction in Eq. (13), Eq. (5)
is valid as before.

To illustrate the use of the new approach, the constants
in Table 3 (Fig. 6) are utilised to model stress–strain curves,
see Fig. 7. As can be seen a good representation of the
curves is obtained. The precision decreases somewhat with
increasing temperature, primarily due to the large scatter at
175 �C.

Creep curves modelled with the combined approach are
illustrated in Fig. 8. The same amount of variation between
curves was observed as for those in Fig. 5.

The primary limitation of the combined approach is that
it requires data covering the initial creep curves with good
accuracy.
4. Basic creep model

4.1. Stationary stress

There has been much discussion in the literature about
operating mechanisms during the deformation of pure fcc
metals such as copper. In the high temperature regime
above about half the melting point Tm the deformation is
controlled by climb of dislocations. For copper Tm/
2 � 400 �C. The climb rate of dislocations vclimb can be
expressed as

vclimb ¼ M climbbr; ð15Þ
where b is Burgers vector and Mclimb the climb mobility.
Hirth and Lothe gave the following expression for Mclimb

[20]:

M climb ¼
Dsb
kBT

e
rb3

kBT ; ð16Þ

where Ds is the self diffusion coefficient, kB Boltzmann’s
constant and T the absolute temperature. The time depen-
dent recovery of dislocation due to climb can be related to
the climb mobility. This takes into account the annihilation
of dislocation dipoles due to climb. Such a term can be
added to Eq. (3)

dq
de
¼ m

bL
� 2xq� 2

_e
M climbsLq

2; ð17Þ

where sL is the dislocation line tension. Ignoring the dy-
namic recovery term 2xq which is more important at lower
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temperatures and considering stationary conditions, i.e.
constant q, one finds that

_e ¼ 2bcL

m
Dsb
kBT

e
rb3

kBT sLq
3=2: ð18Þ

In (18) it has again been assumed that L can be
expressed as cL=

ffiffiffi
q
p

where cL is a constant. Inserting (4)
into Eq. (18) shows that the creep rate behaves as r3, i.e.
the Norton exponent is 3. The exponential term gives only
a small effect. According to Eq. (18) the activation energy is
the same as for the self diffusion coefficient. For pure cop-
per Neumann et al. found an activation energy for self dif-
fusion of 198 kJ/mol [21]. For creep, Raj and Langdon
observed the value 180 kJ/mol at 500–600 �C [13]. All these
basic facts that come out of Eq. (18) have been long
established.

If we use Eq. (18), it gives approximately the correct
creep rate for copper above 400 �C. If instead pipe diffusion
is assumed to be dominating, Eq. (18) still gives a creep rate
of the right order of magnitude from 400 down to 200 �C.
The experimental creep exponent is, however far larger
than 3 in this case, which makes the equation inapplicable.
The selection of the pipe diffusion data for copper is
explained in [22]. At still lower temperatures other mecha-
nisms must enter as well. A common proposition is that the
deformation is glide controlled [11]. Another one is that
both low and high temperature deformation can be repre-
sented by a unified model [23]. We will combine these
two approaches. Following [24] the glide of dislocations
through an obstacle field may be written as

de
dt
¼ f r2e�

Q
RT 1� r

rimax
ð Þq1½ �q2

; ð19Þ

where Q is an activation energy, rimax the maximum back
stress, and f, q1 and q2 constants. The constants q1 and q2

depend on the shape and distribution of obstacles to flow.
q1 = 2 and q2 = 1 have been assumed in the present report,
which are the same values as those chosen by Chandler
[25]. When the applied stress approaches the tensile
strength the recovery rate must be rapidly raised, otherwise
the dislocation density would exceed its maximum possible
value. This is sometimes referred to as spontaneous annihi-
lation of dislocations [26]. The form of Eq. (19) can be seen
Table 5
Values of constants in Eq. (20)

Parameter description Parameter

Coefficient for self diffusion Ds0

Activation energy for self diffusion Qs

Burgers vector b

Strain hardening constant cL

Taylor factor m

Boltzmann’s constant kB

Constant in Eq. (4) a
Shear modulus G

Activation energy for creep at high temperatures Qeff

Max back stress rimax

Dislocation line tension sL
as a generalisation of (18) and these two equations are
combined in a unified model

_eOF ¼
2bcL

m
Ds0bsL

kBT
r

amGb

� �3

e
rb3

kBT e�
Qeff
RT 1� r

rimax
ð Þ2

� 	
: ð20Þ

In Eq. (20) the activation energies for climb and glide
are given the same value. rimax should take a value just
above the tensile strength Rm Æ rimax = 1.2Rm has been cho-
sen. All other parameters in Eq. (20) are readily available
except cL. Assuming the typical value for the initial work
hardening rate of G/200 [15], cL takes the value 57 accord-
ing to Eqs. (3)–(5). Other constants used in Eq. (20) are
given in Table 5.

Eq. (20) (for Cu-OF) is compared to experimental data
in Fig. 9, where the creep rate is given versus the applied
stress. The equation describes the general behaviour of
data reasonably well. The difference between the model
and the data is typically one order of magnitude or less.

The creep rate according to Eq. (20) is valid for pure
copper. Next, the equation is going to be applied to copper
alloyed with about 50 ppm phosphorus Cu-OFP. The creep
rate in this alloy is essentially lower than in pure copper
(Cu-OF). Experimental data for the ratio in creep rate
between the two types of materials is shown in Fig. 10.

The following relation is used to describe the influence
of phosphorus [22]:

fP ¼
_eOF

_eOFP

¼ K1 expðK2e�k3T Þ T > 348 K

K0 T 6 348 K
; ð21Þ

where K0 = 3000, K1 = 0.1695, K2 = 55.73 and
k3 = 0.005 1/�C are constants. Combining Eqs. (20) and
(21) gives an expression for the creep rate of Cu-OFP

_eOFP ¼
2bcL

m
Ds0bsL

kBT
r

amGb

� �3

e
rb3

kBT e�
Qeff
RT 1� r

rimax
ð Þ2

� 	

fP: ð22Þ

The use of Eq. (20) for Cu-OF was illustrated in Fig. 9.
In the same way Eq. (22) is used in Fig. 11 to demonstrate
the behaviour for Cu-OFP.

The same order of magnitude agreement to the data as
for Cu-OF is observed. Naturally the representations in
Figs. 9 and 11 are less precise than the fitted constitutive
equations in Section 3 in the ranges of experimental data.
Value Reference

1.31 · 10�5 m2/s [21]
198000 J/mol [21]
2.56 · 10�10 m
57
3
1.381 · 10�23 J/grad
0.19
G = 4.75 · 104 � 17T MPa, T in K [13]
198000 J/mol [21]
257 MPa
7.94 · 10�16 MN
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However, due to the fundamental nature of Eq. (20) and to
some extent of Eq. (21) [22], these equations are safer to use
if extrapolation outside the experimental data ranges is
needed.
Using the definition in Eq. (9), Eq. (20) gives the follow-
ing expression for the creep exponent:

N ¼ 3þ 2Qeff

RT
r

rimax

� �2

: ð23Þ

Eq. (23) is illustrated in Fig. 12 for Cu-OF and in Fig. 13
for Cu-OFP. N has a quadratic stress dependence.

In Fig. 13 a comparison is also made with the results in
Fig. 2. The values from the fits in Fig. 2 are of the same
order as those from Eq. (22). The comparison again illus-
trates that it would be risky to extrapolate the fitted consti-
tutive equations.

An effective activation energy Q can be defined as

Q ¼ RT
o log _ecrmin

o log T
: ð24Þ
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Applying this equation to Eq. (22) gives

Q ¼ Qeff �
rb3R

kB

� �
1� r

rimax

� �2
" #

þ K2k3RT 2 expð�k3T Þ: ð25Þ

In the first factor in Eq. (25), Qeff = 198 kJ/mol is the
activation energy for self diffusion in pure copper. The sec-
ond term in the first factor rb3R/kB takes values between
0.5 and 2 kJ/mol and is almost negligible in comparison
to the first term. The temperature dependence in Eq. (21)
has been taken into account and it appears as the last term
in (25). Eq. (25) is illustrated in Fig. 14. The top curves rep-
resent Eq. (25) for Cu-OFP. The middle full drawn line is
Eq. (25) with K2 = 0, i.e. the case for Cu-OF. Below
100 MPa there is slow increase in Q with decreasing stress.
This has also been observed by Raj and Langdon for Cu-
40 50 60 70 80 90100 200

70

80

90

100

200

Stationary stress, MPa

A
ct

iv
at

io
n 

en
er

gy
, k

J/
m

ol

 

 

Cu-OF
175°C, model
200°C, model
215°C, model
250°C, model
275°C, model
300°C, model
350°C, model
 75°C, model
125°C, model
Raj & Langdon
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Fig. 15. Two creep curves for 150 and 145 MPa at 175 �C. The rupture times w
and the tertiary creep with the X-model.
OF [13] although the absolute values are slightly lower than
in the present study, see Fig. 14. Above 100 MPa there is
rapid decrease in the activation energy with increasing
stress. The activation energy is considerably larger for
Cu-OFP than for Cu-OF. The difference decreases some-
what with increasing temperature.

4.2. Use of effective stress in the basic creep model

Eq. (20) is based on the assumption that the full applied
stress r is used. In the modelling of general creep and
stress–strain behaviour the effective stress reff is the basis.
In the same way as in Section 3.5, this change can be imple-
mented by involving the initial creep rate rather than the
minimum creep rate. This can be handled in the same
way as in Eq. (13). An alternative way is to use the fact that
an accurate representation of the primary creep strain can
be obtained with the help of the /-model [19]

_e ¼ /1e
�/2
prim; ð26Þ

eprim ¼ ð/1ð1þ /2ÞtÞ
1=ð1þ/2Þ; ð27Þ

where eprim is the primary creep strain, and /1 and /2 are
constants. The use of the /-model is illustrated in
Fig. 15. The tertiary creep is handled with the X-model
[17–19]

de
dt
¼ X3eX4e; ð28Þ

where X3 and X4 are constants. No secondary creep is ta-
ken into account.

It has been found that many creep strain versus time
curves for copper can be well represented in this way.
The constants are determined by fitting to the data. The
slope of the primary creep curves in Fig. 15 is controlled
by the constant /2, see Eq. (27). The temperature and stress
dependence of this constant is illustrated in Fig. 16.

As can seen from Fig. 16, /2 depends mainly on the tem-
perature. This dependence is represented with the following
linear relation:
ere 2351 and 15149 h. The primary creep is represented with the /-model



Fig. 16. Constant /2, in Eq. (27) versus temperature at stress levels from
60 to 150 MPa.
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/2 ¼ 13:3� 0:022T ; ð29Þ

where the temperature T is given in Kelvin.
According to Eq. (26) the ratio between the initial creep

rate _einit and the minimum creep rate _emin satisfies

_einit

_emin

¼ einit

emin

� ��/2

: ð30Þ

If the ratio in Eq. (30) is combined with Eq. (20), the lat-
ter relation can be used with the effective stress. By analy-
sing the data for creep curves it has been found that emin/
einit � 7.5 can be used in Eq. (30) to obtain an estimate of
the initial creep rate.

5. Multiaxial formulation of flow rule

A flow rule for elasto-plastic deformation with kine-
matic and isotropic hardening taken into account has fre-
quently been used, for example by Chaboche and co-
workers [27]. Back stress tensors are introduced to repre-
sent the kinematic hardening. The isotropic part is handled
as a function of the equivalent plastic strain. Below a brief
summary of the model is given. It is demonstrated below
that the representation in Section 3 can be transferred to
multiaxial stresses with this model.

The generalised Hooke’s law for multiaxial stresses can
be expressed as

ee ¼ 1þ m
EðT Þ r�

m
EðT Þ TrðrÞ; ð31Þ

where ee is the elastic strain tensor, r the stress tensor, m
Poisson’s ratio, and E(T) the temperature dependent elastic
modulus. The total strain tensor increment can be written
as

de ¼ dee þ dep; ð32Þ

where dee and dep are the elastic and the plastic strain ten-
sor increment including the creep strain, respectively.
Using (31) a relation can be obtained between the strain
and stress increments

dr ¼ Eðde� depÞ; ð33Þ
where E is the elastic stiffness tensor. Instead of using a
plastic flow rule which is the traditional approach [27], a
viscoplastic model can be utilised [28]. This is consistent
with the presentation in Section 3. In its simplest form an
effective strain rate is introduced in the following way:

_p ¼ AhJðr� riÞ � ry0 � Kin: ð34Þ
The brackets are defined by hwi = wH(w) where H(w) is

the Heaviside function (H(w) = 0 if w < 0, H(w) = 1 if
w P 0). The constants A and n are the same as in Eq.
(7). J is the second order stress invariant

Jðr� riÞ ¼
ffiffiffi
3

2

r
r0 � r0i
� �

: ðr0 � r0iÞ; ð35Þ

r 0and r0i are the deviatoric part of the stress and back stress
tensor r and ri, respectively. : represents tensor multiplica-
tion element by element. ry ¼ ry0 þ K ep

eff

� �
is the isotropic

yield function. In the present work the isotropic yield func-
tion is neglected. ep

eff is the effective plastic strain. ep
eff is gi-

ven by

dep
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
dep : dep

r
: ð36Þ

With the help of (34) a viscoplastic strain rate is derived

dep

dt
¼ 3

2
_p

r0 � r0i
Jðr� riÞ

: ð37Þ

Eq. (37) has the same form as Odqvist’s creep equation
for multiaxial stress states but with a back stress tensor
introduced. To describe the time dependence of the back
stress tensor the Armstrong–Frederick non-linear law is
used [29]

dri

dt
¼ 2

3
ak

dep

dt
� ckri

dep
eff

dt
; ð38Þ

where ak and ck are the kinematic hardening parameters.
Eq. (38) is now expressed in terms of strain increments
rather than in time increments

dri

dep
eff

¼ 2

3
ak

dep

dep
eff

� ckri: ð39Þ

Comparing Eqs. (5) and (39) one finds that

ck ¼ x; ð40Þ
ak ¼ xC: ð41Þ

Eq. (34) can be generalised to correspond to Eq. (10)

_p ¼ AhJðr� riÞ � ry0 � KinðT ÞebJðr�riÞe�
qðT Þ
RT : ð42Þ

In this way a generalisation of Eqs. (5) and (10) to a
multiaxial stress state has been established. In a similar
way the basic model in Eq. (22) can be generalised to mul-
tiaxial stresses
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_p ¼ 2bc
m

Ds0bsL

kBT
Jðr� riÞ

amGb

� �3

� e
Jðr�riÞb3

kBT e
�Qeff

RT 1� Jðr�riÞ
rimax

� �2
h i

grate

,
fP: ð43Þ

In Eq. (43), Eq. (14) has also been taken into account.
6. Discussion

Copper in the Swedish waste package canisters for used
nuclear fuel will be exposed to creep at temperatures below
100 �C. Stresses of interest in this temperature range is
inside the power-law breakdown regime. This can be illus-
trated in the following way. The absolute lowest creep rate
that could affect the canister is 1% in 106 years, which cor-
responds to a rate of 3 · 10�16 s�1. If Eq. (22) is used a
stress of 105 MPa at 100 �C gives this rate. From Eq.
(23) a creep exponent of 24 is obtained at this condition.
At still lower temperatures and higher stresses the exponent
would be higher than this value. It can be concluded that
the range of technical interest is well inside the power-law
breakdown regime.

When computing creep deformation in components
during design two alternative approaches can be used. If
the stresses in the component to be analysed do not vary
much and the initial primary stage is not too important,
expressions based on the stationary creep rate can be
used. On the other hand if the stresses are strongly vary-
ing in the component an approach based on the effective
stress should be applied. In this way the loading history
of the component can be taken into account. The former
situation will be referred to as the stationary case and the
latter to as the non-stationary one. In the stationary case
the creep rate can be related to the applied stress and
expressions can be obtained directly from the experimen-
tal data. In the non-stationary case the back stress must
be computed and the expressions in the stationary case
must be translated to be applicable. It is obvious that if
the stationary approach can be used one can expect a
more accurate result since fewer computational steps are
involved.

Norton type expressions for the creep rate as a function
of the applied stress were derived by direct fitting to the
experimental data, Eq. (7). Since there is a dramatic change
of the creep behaviour in the interval around 175–200 �C,
the data was split up in two temperature ranges. The result-
ing coefficients are given in Table 3. In the stationary case
these expressions can be applied directly in design.
Although reasonably accurate in the range of experimental
data, these expressions are not suitable for extrapolation.
In the temperature interval 20–175 �C experimental data
are available from 140 to 210 MPa. In this temperature
interval, Eq. (7) should thus not be used below 140 MPa.

To handle lower stresses an expression, Eq. (20) based
on fundamental deformation principles for climb and glide
has been derived. With this expression the observed creep
rates of Cu-OF can be predicted within about an order
of magnitude. Due to the basic nature of this expression
and since it does not involve any fitted parameters, it is
believed that it can be used more safely for extrapolation.

In [22] a fundamental relation for the ratio in creep rate
between Cu-OF and Cu-OFP is derived. Unfortunately,
this expression is not accurate enough to be used in design.
Instead, a ratio is obtained by fitting a function to this
data. This function is given in Eq. (21). Since extrapolation
is not involved in this case, this function is the best avail-
able alternative.

In the non-stationary case the Kocks–Mecking model is
used to compute the back stress. This has two important
advantages. First, it is well known that this model can sat-
isfactorily describe the plastic deformation of many fcc
metals including copper. Second, there are established ways
to translate the model to multiaxial stresses. The successful
use of the model to describe the slow strain rate stress–
strain curves demonstrates the validity of the Kocks–Mec-
king model.

New approaches are introduced to handle the transfer of
stationary to non-stationary models. The basic principle is
to base the models on the initial creep strain rate rather the
minimum rate. At least for an annealed metal the initial
back stress can be assumed to vanish. Then the same meth-
ods as for the stationary case can be applied but with min-
imum creep rate replaced by the initial one.

Two methods are used to relate the initial creep rate to
the minimum one. According to the first method it is
assumed that the typical strain where the creep rate is min-
imum is approximately known. The back stress at this
strain is then computed and the initial rate can then directly
be obtained. Comparisons to a number of experimental
creep versus time curves verify this method.

In the second method it is assumed that the primary
creep can be described by the /-model. For individual
creep curves this can be done with a very high precision.
The intrinsic scatter between creep–time curves means that
some approximations are involved when formulating a
general model. This model is presented in Eq. (30). In prin-
ciple this method is quite accurate but the difficulty lies in
finding a precise value for the parameter /2.

In Section 5, an established model [27,28] is used to
transfer the non-stationary uniaxial expressions to multiax-
ial stress states. It is demonstrated how the parameters in
the multiaxial models are derived. In the stationary case
there is no need to compute the back stress, so Eq. (38)
can be ignored and the back stress can be assumed to van-
ish in the equations in Section 5.
7. Conclusions

• The creep properties of phosphorus alloyed copper (Cu-
OFP) vary dramatically over the studied temperature
interval between 20 and 400 �C. A generalised Norton
model has been used to represent the temperature and
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stress dependence of the minimum creep rate. The creep
exponent takes values from 4 to 105 showing a pro-
nounced power-law breakdown.

• A new unified model has been proposed to fully describe
the transition from power-law to power-law breakdown.
A fundamental expression for climb controlled creep has
been combined with a model for glide controlled defor-
mation. The new model gives creep rates of the right
order of magnitude for the whole studied temperature
range without the use of any fitted parameters.

• Computations of creep deformation in components can
either be based on the applied stress or the effective
stress. The former case is applicable when the stresses
do not vary much in time. This is referred to as the sta-
tionary case. However, if the stresses have a pronounced
time dependence the loading history must be considered.
This is done with the help of the effective stress that is
the difference between the applied stress and the back
stress. The latter stress takes the loading history into
account. This is referred as the non-stationary case.

• Ordinary creep strain data is in a form that can be
directly used in the stationary case. To apply the data
in the non-stationary case, two new methods have been
developed. In both these methods the basic idea is to use
the initial creep rate rather than the minimum value,
which is the conventional way. In the first method the
strain where the minimum creep rate occurs must be
known. In the second method the /-model is used to
represent the primary creep which is possible with high
precision.

• Constitutive equations for plastic deformation including
creep have been formulated for Cu-OFP. The tempera-
ture range 20–400 �C has been covered. A generalised
Norton model for the minimum creep rate has been
combined with the Kocks–Mecking model for the back
stress.

• The steady state creep rate, creep strain curves, and slow
rate tensile stress–strain curves can be described ade-
quately with the help of the constitutive equations.

• The derived constitutive equations have been general-
ised to multiaxial stress states to enable their use in finite
element modelling.
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